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LETTER TO THE EDITOR 

The dilute spin-one Ising model on a honeycomb lattice 

Viktor Urumov 
Institut za Fizika, Univerzitet ‘Kiril i Metodij’, p. fah 162, Skopje 91001, Yugoslavia 

Received 22 November 1988 

Abstract. Given some restriction on the interaction parameters, the critical temperature for 
the spin-one Ising model on a honeycomb lattice described with the Blume-Emery-Griffiths 
Hamiltonian with random non-magnetic impurities in equilibrium (annealed site-disorder 
case) is obtained exactly. 

The study of various Ising models is a subject with a long history (Domb 1973). The free 
energy and the logarithmic singularity of the specific heat for the two-dimensional Ising 
model on a square lattice were found by Onsager (1944), the first derivation for the 
magnetisation was published by Yang (1952) and exact results for the correlations and 
the susceptibility were discussed by McCoy and Wu (1973). Another problem of interest 
and practical importance is the behaviour of random systems in which some of the 
constituent atoms of the physical system are foreign to the host lattice, thus acting as 
impurities and introducing constitutional disorder. Two different types of model are 
encountered: the quenched case and the annealed case. In the former more natural case, 
the impurities are frozen in their random positions, while in the latter they are free to 
move and reach the equilibrium state. The annealed case is easier to deal with and it is 
treated with the methods of equilibrium statistical mechanics. 

The subject of dilute magnetism, where the impurities are of non-magnetic nature, 
was reviewed by Stinchcombe (1983). The exact results are essentially restricted to the 
case of bond disorder in which the interaction parameters between two neighbouring 
spins can take random values according to some distribution law. The decorated models 
(and models on bipartite lattices) in which only the decorating sites are occupied by 
magnetic or non-magnetic atoms (on bipartite lattices only one of the sublattices can 
host the impurities) can be related to the corresponding pure models (Syozi 1965, Syozi 
and Miyazima 1966, Wu 1980). It is the purpose of this Letter to present some exactly 
obtained results for a model with natural disorder, extended to all the sites of the lattice. 

The model at hand is the Blume-Emery-Griffiths (BEG) spin-one model defined by 
the Hamiltonian 

where the first two summations are carried out over all the pairs of nearest neighbours 
on a honeycomb lattice, and the last term is a sum over all sites of the lattice. The 
presence or absence of a spin on the lattice site i is accounted for by ci, a spin-like variable 
correspondingly taking two values, 1 or 0. The spin si at site i can have three orientations 
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0, + 1 and - 1 and the neighbouring pairs of spins interact via bilinear (J) and biquadratic 
( K )  exchange. The single-site interaction energy A$ci represents the interaction with 
the crystal field. Originally the model (Blume eta1 1971) without impurities was proposed 
to discuss the phase separation and superfluid ordering in 3He-4He mixtures. Recently, 
Horiguchi (1986) obtained an exact expression for the partition function of the pure BEG 
model on the honeycomb lattice under the restriction 

exp(PK) = cosh(/3J) (2) 
where p = l / k T  ( k  is the Boltzmann constant and T the absolute temperature), and I 
(Urumov 1987) calculated the magnetisation under the same restriction. 

We can obtain the grand partition function for the model 

where the summations {si, ci} are carried out over all the possible configurations of the 
variables si, ci. The last term in the exponent is introduced to keep count of the number 
of occupied sites. The variable is eliminated using 

where Nh is the number of sites on the honeycomb lattice and p is the concentration of 
sites occupied by magnetic atoms. 

An essential step for the calculation is the identity 

which effectively introduces the spin-like variable aij = i 1 on each bond connecting two 
neighbouring sites. The lattice of 0-spins is known as the KagomC lattice. It is shown in 
figure 1 together with the original honeycomb lattice of s-spins. 

From all the possible values of si and ci for a pair of neighbouring sites we obtain the 
following equations for the effective interaction parameters A and B in (5 ) :  

exp(PJ - /3K)  = cosh(2A) exp(2B) 

1 = coshA exp B 

exp(-PJ - PK) = exp(2B). 

(6) 

Their solution 

A = 0.5 cosh-' exp(2PJ) B = -0.5(PJ + ln(cosh PI))  (7) 

introduces the restriction (2) for the validity of the identity ( 5 ) .  The temperature- 
dependent effective interaction parameterSA and B and the restrictive condition (2) are 
exactly the same as those found for the pure system (Horiguchi 1986). The presence of 
impurities manifests itself in the subsequent transformations. 

Substitution of the identity ( 5 )  in the grand partition function permits one to inter- 
change the order of summations 

first eliminating the s-spins on the honeycomb lattice. Here Nb is the number of bonds 



Letter to the Editor 1161 

Figure 1. The honeycomb lattice is 
shown by thin lines. The open 
circles represent the sites that can 
beoccupied eitherbys-spins, which 
can take the values 0, 21, or by 
non-magnetic impurities free from 
interactions with their neighbours. 
The KagomC lattice is given in thick 
lines that connect the sites occupied 
by o-spins (full circles) which can 
have only two orientations, +1 or 
-1. 

on the honeycomb lattice and o,,~, of,2, of,, are the o-neighbours of s,. The internal 
summations over c, = 0 , l  and s, = 0, 1 can be represented as 

1 + exp f + 2 exp(g + 3B - PA) cosh[A(o,, + + a,,,)] 

= D exP[F(af,,a,,, + o,,p,,3 + or,30,,l)l (9) 

with the effective interaction between the pairs of nearest-neighbour spins on the 
Kagome lattice given by 

exp(4F) = (1 + exp 5- + 2 exp(f + 3B - PA) cosh 3A) 

x (1 + exp f + 2 exp(E + 3B - BA) cosh A)-' (10) 

and 

D4 = (1 + exp f + 2 exp(f + 3 8  - PA) cosh 3A) 

x (1 + exp E + 2 exp(g + 3B - PA) cosh A)3.  (11) 

Introducing (9) in (8) we find that the grand partition function of our model is 
expressed by the partition function ZK(F)  for the KagomC lattice 

5 = 2 - N b D N h Z ~ ( F ) ,  (12) 

Equation (4) leads to 

1 + $xK q + 2q exp(3B - PA) cosh 3A 
= 4 1 + q + 2q exp(3B - PA) cosh 3A 

3 - $EK +- 4 + 2q exp(3B - PA) CoshA 
4 1 + q + 2q exp(3B - PA) coshA 
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kT, / J  

Figure 2. The reduced critical temperature kT,/J as a function of p (the number density of 
magnetic atoms) and A/J (the reduced crystal field parameter). 

where EK = EK(F) = (1/NK) 8 In ZK(F)/aFand the factor of 3/2 in front of eK(F) stems 
from the relation NK = #Nh giving the number of sites NK on the KagomC lattice. The 
parameter q = exp E can be expressed using (10) as 

1 - exp(4F) 
exp(4F) (1 + 2 exp(3B - PA) cosh A )  - (1 + 2 exp(3B - P A )  cosh 3A) . (14) 

Equations (13) and (14) give in implicit form the effective interaction F a s  a function of 
the temperature, the concentration of magnetic atoms p and the parameters of the 
Hamiltonian J ,  K and A .  

To determine the critical temperature of the model, use should be made of the critical 
parameters F,, E, of the KagomC lattice which are known (Syozi 1972) to be 

exp(4~,)  = 3 + 2 d 3  E ,  = (1 + 2d\/3)/6. (15) 

With such substitutions in (13) and (14), the equation was solved numerically for 
various values of the parametersp and A/J.  The critical surface is displayed in figure 2. 
It is folded for positive A/J giving two critical temperatures between which there is 
magnetic order in the system. We should stress here again that along the axis of the 
critical temperature the ratio K/J of the exchange interaction parameters changes 
according to the restrictive condition (2). 

The critical concentration p , ,  which limits the phase with magnetic order t o p  > p,, 
can be evaluated from (13) and (14), examining the asymptotic region when the critical 
temperature tends to 0. The analysis gives two critical concentrations, one for A = 0 
when 

1 + 3 ~ , / 2  9q 3(1 + ~ , /2 )  4 + 
pcl = 4 1 + 9q 4 l + q  
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with q = (1 - exp 4Fc)/(exp 4F, - 9) leading to pcl = 0.824759527 and the other for 
negative A/J given by 

+ 3sc/2 (1 - exp(-4Fc)) = 0.447168784. 
4 P c 2  = 

In conclusion, under the restrictive condition (2), an exact mapping of the dilute BEG 
spin-one model on a honeycomb lattice with site disorder onto the pure Kagome lattice 
Ising model with usual a = k 1 spins and effective temperature and concentration depen- 
dent interaction was achieved. An essential feature for the preceding calculation to be 
possible is that the honeycomb lattice has a coordination number z = 3. Exactly the 
same calculation can be done for any lattice with coordination number z = 3 if at the 
same timethe critical parameters F, and E, are known for the lattice of a-spins obtained 
by their introduction in the middle of each bond of the basic lattice (the 3-12 lattice is 
such a candidate). The calculation can also be extended to the evaluation of the specific 
heat (Syozi 1965,1972), to themagnetisation (Urumov 1987) andthecorrelation function 
and it is hoped to address these questions in the future. 
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